Big Polynomial Rings with Imperfect Coefficient Fields
نویسندگان
چکیده
We previously showed that the inverse limit of standard-graded polynomial rings with perfect (or semiperfect) coefficient field is a ring in an uncountable number variables. In this paper, we show result holds no hypothesis on field. also prove analogous for ultraproducts rings.
منابع مشابه
Rings with a setwise polynomial-like condition
Let $R$ be an infinite ring. Here we prove that if $0_R$ belongs to ${x_1x_2cdots x_n ;|; x_1,x_2,dots,x_nin X}$ for every infinite subset $X$ of $R$, then $R$ satisfies the polynomial identity $x^n=0$. Also we prove that if $0_R$ belongs to ${x_1x_2cdots x_n-x_{n+1} ;|; x_1,x_2,dots,x_n,x_{n+1}in X}$ for every infinite subset $X$ of $R$, then $x^n=x$ for all $xin R$.
متن کاملFaster integer and polynomial multiplication using cyclotomic coefficient rings
We present an algorithm that computes the product of two n-bit integers in O(n log n (4\sqrt 2)^{log^* n}) bit operations. Previously, the best known bound was O(n log n 6^{log^* n}). We also prove that for a fixed prime p, polynomials in F_p[X] of degree n may be multiplied in O(n log n 4^{log^* n}) bit operations; the previous best bound was O(n log n 8^{log^* n}).
متن کاملFactoring in Skew-Polynomial Rings over Finite Fields
Efficient algorithms are presented for factoring polynomials in the skew-polynomial ring F[x; σ], a non-commutative generalization of the usual ring of polynomials F[x], where F is a finite field and σ: F → F is an automorphism (iterated Frobenius map). Applications include fast functional decomposition algorithms for a class of polynomials in F[x] whose decompositions are “wild” and previously...
متن کاملCoding with skew polynomial rings
In analogy to cyclic codes, we study linear codes over finite fields obtained from left ideals in a quotient ring of a (non commutative) skew polynomial ring. The paper shows how existence and properties of such codes are linked to arithmetic properties of skew polynomials. This class of codes is a generalization of the θ-cyclic codes discussed in [1]. However θ-cyclic codes are performant repr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 2021
ISSN: ['0026-2285', '1945-2365']
DOI: https://doi.org/10.1307/mmj/1603353740